Erythropoietin: a model system for studying oxygen-dependent gene regulation.

Author:

Bunn H F1,Gu J1,Huang L E1,Park J W1,Zhu H1

Affiliation:

1. Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. bunn@calvin.bwh.harvard.edu

Abstract

The physiological regulation of the red cell mass depends upon enhanced transcription of the erythropoietin (Epo) gene in response to hypoxia. Studies of Epo gene expression have been useful in investigating the mechanism by which cells and tissues sense hypoxia and respond with biologically appropriate alterations in gene expression. It is likely that oxygen sensing involves a heme protein in which cobalt and nickel can substitute for iron in the porphyrin ring. Indirect evidence suggests that the sensor is present in all cells and is a multi-subunit assembly containing an NAD(P)H oxidase capable of generating peroxide and reactive oxygen intermediates, which serve as signaling molecules. The up-regulation of Epo gene transcription by hypoxia is mediated by at least two known DNA-binding transcription factors, hypoxia-inducible factor 1 (HIF-1) and hepatic nuclear factor 4 (HNF-4), which bind to cognate response elements in a critical 3' enhancer approximately 50 bp in length. HIF-1 binding is induced by hypoxia as well as by cobalt. The activation of HIF-1 by hypoxia depends upon the selective protection of its alpha subunit from ubiquitin-dependent proteolysis by means of a mechanism that involves redox chemistry and perhaps phosphorylation. HNF-4 is an orphan nuclear receptor that is constitutively expressed in kidney and liver and which cooperates with HIF-1 to give maximal hypoxic induction. In hypoxic cells, p300 or a related family member forms a macromolecular assembly with HIF-1 and HNF-4, enabling transduction from the Epo 3' enhancer to the apparatus on the promoter responsible for the initiation of transcription.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3