Limits for oxygen and substrate transport in mammals.

Author:

Hoppeler H1,Weibel E R1

Affiliation:

1. Institute of Anatomy, Bern, Switzerland. hoppeler@ana.unib.ch

Abstract

Environmental oxygen is transported by the respiratory cascade to the site of oxidation in active tissues. Under conditions of heavy exercise, it is ultimately the working skeletal muscle cells that set the aerobic demand because over 90 % of energy is spent in muscle cells. The pathways for oxygen and substrates converge in muscle mitochondria. In mammals, a structural limitation of carbohydrate and lipid transfer from the microvascular system to the muscle cells is reached at a moderate work intensity (i.e. at 40-50 % of VO2max). At higher work rates, intracellular substrate stores must be used for oxidation. Because of the importance of these intracellular stores for aerobic work, we find larger intramyocellular substrate stores in 'athletic' species as well as in endurance-trained human athletes. The transfer limitations for carbohydrates and lipids at the level of the sarcolemma imply that the design of the respiratory cascade from lungs to muscle mitochondria reflects primarily oxygen demand. Comparative studies indicate that the oxidative capacity of skeletal muscle tissue, and hence maximal oxygen demand, is adjusted by varying mitochondrial content. At the level of microcirculatory oxygen supply, it is found that muscle tissue capillarity is adjusted to muscle oxygen demand but that the capillary erythrocyte volume also plays a role. Oxygen delivery by the heart has long been recognized to be a key link in the oxygen transport chain. In allometric variation it is heart rate and in adaptive variation it is essentially stroke volume, and hence heart size, that determines maximal cardiac output. Again, haematocrit is an important variable that allows the heart of athletic species to generate higher flux rates for oxygen. The pulmonary gas exchanger offers only a negligible resistance to oxygen flux to the periphery. However, in contrast to all other steps in the respiratory cascade, the lungs have only a minimal phenotypical plasticity and appear, therefore, to be built with considerable structural redundancy in all but the most athletic species. Because of the lack of malleability, the lungs may ultimately become limiting for VO2max when adaptive processes have maximized O2 flux through the malleable downstream elements of the respiratory system: the heart, microcirculation and muscle mitochondria.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3