Flight thermogenesis and energy conservation in hovering hummingbirds

Author:

Chai P,Chang A C,Dudley R

Abstract

As the smallest homeotherms, hummingbirds suffer from low thermal inertia and high heat loss. Flapping flight is energetically expensive, and convective cooling due to wing and air movements could further exacerbate energy drain. Energy conservation during flight is thus profoundly important for hummingbirds. The present study demonstrates that heat produced by flight activity can contribute to thermoregulatory requirements in hovering hummingbirds. The rate of oxygen consumption, as an indicator of metabolic cost, was measured during hover-feeding and compared with that during perch-feeding. In hover-feeding, oxygen consumption increased only moderately between 35 and 5 degreesC in contrast to the sharp increase during perch-feeding over the same temperature range. This result suggests that heat produced by contraction of the flight muscles substituted for regulatory thermogenesis to accommodate for heat loss during exposure to low temperature. With declining air temperatures, the mechanical power requirements of hovering decreased slightly, but metabolic costs increased moderately. As a result, the mechanical efficiency of the muscle in converting metabolic power to mechanical power was reduced. Changes in wingbeat kinematics also accompanied the reduction in muscle efficiency. Wingbeat frequency increased but stroke amplitude decreased when hovering in the cold, suggesting thermoregulatory roles for the flight muscles. Hovering hummingbirds modulated their wingbeat frequency within a narrow range, reflecting the physical constraints of tuning to a natural resonant frequency with an elastic restoring force. We hypothesize that, by forcing the resonant system of the wings and thorax to oscillate at different frequencies, muscle contraction in the cold generates more heat at the expense of mechanical efficiency. This mechanism of modulating the efficiency of muscle contraction and heat production allows flying hummingbirds to achieve energy conservation at low air temperatures.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3