Blood volume, plasma volume and circulation time in a high-energy-demand teleost, the yellowfin tuna (Thunnus albacares)

Author:

Brill R,Cousins K,Jones D,Bushnell P G,Steffensen J F

Abstract

We measured red cell space with 51Cr-labeled red blood cells, and dextran space with 500 kDa fluorescein-isothiocyanate-labeled dextran (FITC-dextran), in two groups of yellowfin tuna (Thunnus albacares). Red cell space was 13.8+/-0.7 ml kg-1 (mean +/- s.e.m.) Assuming a whole-body hematocrit equal to the hematocrit measured at the ventral aortic sampling site and no significant sequestering of 51Cr-labeled red blood cells by the spleen, blood volume was 46. 7+/-2.2 ml kg-1. This is within the range reported for most other teleosts (30-70 ml kg-1), but well below that previously reported for albacore (Thunnus alalunga, 82-197 ml kg-1). Plasma volume within the primary circulatory system (calculated from the 51Cr-labeled red blood cell data) was 32.9+/-2.3 ml kg-1. Dextran space was 37.0+/-3.7 ml kg-1. Because 500 kDa FITC-dextran appeared to remain within the vascular space, these data imply that the volume of the secondary circulatory system of yellowfin tuna is small, and its exact volume is not measurable by our methods. Although blood volume is not exceptional, circulation time (blood volume/cardiac output) is clearly shorter in yellowfin tuna than in other active teleosts. In a 1 kg yellowfin tuna, circulation time is approximately 0.4 min (47 ml kg-1/115 ml min-1 kg-1) compared with 1. 3 min (46 ml kg-1/35 ml min-1 kg-1) in yellowtail (Seriola quinqueradiata) and 1.9 min (35 ml kg-1/18 ml min-1 kg-1) in rainbow trout (Oncorhynchus mykiss). In air-breathing vertebrates, high metabolic rates are necessarily correlated with short circulation times. Our data are the first to imply that a similar relationship occurs in fishes.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3