Review: Evolutionary link between prokaryotic and eukaryotic K+ channels.

Author:

Derst C1,Karschin A1

Affiliation:

1. Institute for Normal and Pathological Physiology, University of Marburg, Germany and Max-Planck-Institute for Biophysical Chemistry, Molecular Neurobiology of Signal Transduction, Am Fassberg 11, Germany. akarsch@gwdg.de

Abstract

Considering the importance of K+ channels in controlling the crucial K+ gradient across the plasma membranes of all living cells, it comes as no surprise that, besides being present in every eukaryotic cell, these integral membrane proteins have recently also been identified in prokaryotes. Today, approximately a dozen successfully completed and many more ongoing sequencing projects permit a search for genes related to K+ channels in the genomes of both eubacteria and archaea. The coding regions of homologues show a remarkable variety in primary structure. They predict membrane proteins with one, two, three and six hydrophobic segments surrounding a putative K+-selective pore (H5) and the presence or absence of a cytosolic putative NAD+-binding domain (PNBD) that probably senses the reducing power of the cell. The analysis of kinships on the basis of phylogenetic algorithms identifies sequences closely related to eukaryotic voltage-dependent Kv channels, but also defines members of a primordial class of prokaryotic K+ channel (containing the 2TMS/PNBD motif). Considering the unique mechanisms that may account for the assembly of modern proteins from different ancestral genes, and with more primary sequence data soon to appear, a scheme for the evolutionary origin of K+ channels comes within reach.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3