The intestinal response to feeding in seawater gulf toadfish, Opsanus beta, includes elevated base secretion and increased epithelial oxygen consumption

Author:

Taylor J. R.1,Grosell M.1

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA

Abstract

SUMMARY Intestinal HCO3− secretion is essential to marine teleost fish osmoregulation and comprises a considerable source of base efflux attributable to both serosal HCO3− and endogenous CO2 hydration. The role of intestinal HCO3− secretion in dynamic acid—base balance regulation appears negligible in studies of unfed fish, but evidence of high intestinal fluid [HCO3−] in fed marine teleosts led us to investigate the source of this HCO3− and its potential role in offsetting the postprandial ‘alkaline tide’ commonly associated with digestion. Specifically, we hypothesized that elevated metabolic rate and thus endogenous CO2 production by intestinal tissue as well as increased transepithelial intestinal HCO3− secretion occur post-feeding and offset a postprandial alkaline tide. To test these hypotheses changes in HCO3− secretion and O2 consumption by gulf toadfish (Opsanus beta) isolated intestine were quantified 0, 3, 6, 12, 24 and 48 h post-feeding. Intestinal tissue of unfed fish in general showed high rates of HCO3− secretion (15.5 μmol g−1 h−1) and O2 consumption (8.9 μmol g−1 h−1). Furthermore, postprandial increases in both intestinal HCO3− secretion and O2 consumption (1.6- and 1.9-fold peak increases, respectively) were observed. Elevated intestinal HCO3− secretion rates preceded and outlasted those of O2 consumption, and occurred at a magnitude and duration sufficient to account for the lack of alkaline tide. The dependence of these high rates of postprandial intestinal base secretion on serosal HCO3− indicates transepithelial HCO3− transport increases disproportionately more than endogenous CO2 production. The magnitude of postprandial intestinal HCO3− secretion indicates the intestine certainly is capable of postprandial acid#x02014;base balance regulation.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3