Affiliation:
1. Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
Abstract
Autosomal dominant neurohypophyseal diabetes insipidus results from mutations in the precursor protein of the antidiuretic hormone arginine vasopressin. Mutant prohormone is retained in the endoplasmic reticulum of vasopressinergic neurons and causes their progressive degeneration by an unknown mechanism. Here, we show that several dominant pro-vasopressin mutants form disulfide-linked homo-oligomers and develop large aggregations visible by immunofluorescence and immunogold electron microscopy, both in a fibroblast and a neuronal cell line. Double-labeling showed the pro-vasopressin aggregates to colocalize with the chaperone calreticulin, indicating that they originated from the endoplasmic reticulum. The aggregates revealed a remarkable fibrillar substructure. Bacterially expressed and purified mutant pro-vasopressin spontaneously formed fibrils under oxidizing conditions. Mutagenesis experiments showed that the presence of cysteines, but no specific single cysteine, is essential for disulfide oligomerization and aggregation in vivo. Our findings assign autosomal dominant diabetes insipidus to the group of neurodegenerative diseases associated with the formation of fibrillar protein aggregates.
Publisher
The Company of Biologists
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献