In vivo human gracilis whole-muscle passive stress–sarcomere strain relationship

Author:

Persad Lomas S.1,Binder-Markey Benjamin I.2ORCID,Shin Alexander Y.1,Kaufman Kenton R.1,Lieber Richard L.345ORCID

Affiliation:

1. Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA

2. Department of Physical Therapy and Rehabilitation Sciences, Drexel University, Philadelphia, PA 19104, USA

3. Shirley Ryan AbilityLab, Chicago, IL 60611, USA

4. Hines V.A. Hospital, Maywood, IL 60141, USA

5. Departments of Physiology and Biomedical Engineering, Northwestern University, Chicago, IL60208, USA

Abstract

ABSTRACT We measured the passive mechanical properties of intact, living human gracilis muscles (n=11 individuals, 10 male and 1 female, age: 33±12 years, mass: 89±23 kg, height: 177±8 cm). Measurements were performed in patients undergoing surgery for free-functioning myocutaneous tissue transfer of the gracilis muscle to restore elbow flexion after brachial plexus injury. Whole-muscle force of the gracilis tendon was measured in four joint configurations (JC1–JC4) with a buckle force transducer placed at the distal tendon. Sarcomere length was also measured by biopsy from the proximal gracilis muscle. After the muscle was removed, a three-dimensional volumetric reconstruction of the muscle was created via photogrammetry. Muscle length from JC1 to JC4 increased by 3.3±1.0, 7.7±1.2, 10.5±1.3 and 13.4±1.2 cm, respectively, corresponding to 15%, 34%, 46% and 59% muscle fiber strain, respectively. Muscle volume and an average optimal fiber length of 23.1±0.7 cm yielded an average muscle physiological cross-sectional area of 6.8±0.7 cm2 which is approximately 3 times that measured previously from cadaveric specimens. Absolute passive tension increased from 0.90±0.21 N in JC1 to 16.50±2.64 N in JC4. As expected, sarcomere length also increased from 3.24±0.08 µm at JC1 to 3.63±0.07 µm at JC4, which are on the descending limb of the human sarcomere length–tension curve. Peak passive muscle stress was 27.8±5.5 kPa in JC4 and muscle modulus ranged from 44.8 MPa in JC1 to 125.7 MPa in JC4. Comparison with other mammalian species indicates that human muscle passive mechanical properties are more similar to rodent muscle than to rabbit muscle. These data provide direct measurements of whole-human muscle passive mechanical properties that can be used in modeling studies and for understanding comparative passive mechanical properties among mammalian muscles.

Funder

U.S. Department of Veterans Affairs

National Institutes of Health

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference63 articles.

1. Complications and outcomes of functional free gracilis transfer in brachial plexus palsy;Adams;Acta Orthop. Belg.,2009

2. The mechanics of hopping by kangaroos (Macropodidae);Alexander;J. Zool.,2009

3. Direct in vivo tendon force measurement system;An;J. Biomech.,1990

4. A model of the lower limb for analysis of human movement;Arnold;Ann. Biomed. Eng.,2010

5. Locomotor function shapes the passive mechanical properties and operating lengths of muscle;Azizi;Proc. R. Soc. B,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3