Polarized distribution of Na,K-ATPase in honeybee photoreceptors is maintained by interaction with glial cells

Author:

Baumann O.1,Takeyasu K.1

Affiliation:

1. Institut fur Zoologie, Universitat Regensburg, Federal Republic of Germany.

Abstract

Arthropod photoreceptors are polarized cells displaying distinct surface domains. The distribution of the Na,K-ATPase (sodium pump) over these domains was examined in the honeybee photoreceptor using a monoclonal antibody that specifically recognizes the sodium pump alpha-subunit (approximately 100 kDa). We find that the sodium pump is restricted to sites of the nonreceptive photoreceptor surface closely juxtaposed to glial cells; no sodium pumps were detected on the glia-free domains of the nonreceptive surface and on the light-sensitive microvillar membranes. In order to determine the role of photoreceptor-glia contact in maintaining this polarized pump distribution, we assayed the distribution of the Na,K-ATPase after experimentally influencing photoreceptor-glia contact. Sodium pumps were present on the entire nonreceptive photoreceptor surface when photoreceptor-glia contact was removed by isolating the photoreceptors. Remodeling photoreceptor-glia contact by incubation in hyperosmotic saline caused a redistribution of sodium pumps on the photoreceptor surface corresponding to the redistribution of glial cells. We show, further, that both photoreceptor-glia contact and Na,K-ATPase distribution are independent of extracellular Ca2+. No junctional structures were observed at the borders between Na,K-ATPase-positive and Na,K-ATPase-negative membrane domains. Together, these results suggest that adhesion of glial cells to the photoreceptors plays a crucial role in the maintenance of the polarized distribution of Na,K-ATPase in the honeybee photoreceptors. The Ca(2+)-independent adhesion of glial cells to the photoreceptor surface may trap the pump molecules at the sites of photoreceptor-glia contact.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3