Characterisation of an epithelium-like layer of cells in the multicellular Dictyostelium discoideum slug

Author:

Fuchs M.,Jones M.K.,Williams K.L.

Abstract

Ultrarapid freezing (RF) followed by freeze-substitution (FS) provide superior preservation of the Dictyostelium discoideum multicellular slug tissue over conventional methods of chemical fixation at room temperature. The peripheral cells of slugs prepared by RF and FS form a tight layer of flattened cells. This cell layer resembles epithelia of other multicellular organisms in that it has close junctional contact between cells associated with the extracellular matrix (ECM, slime sheath). This is the first report that clearly demonstrates the existence of such peripheral cellular specialisation in this otherwise well-studied model system. Junctional contacts between adjacent cells mean that there is no intercellular space evident between apical membranes of apposing cells, and basally the intermembraneous space between peripheral cells is less than 10 nm. By contrast, the intercellular space between internal cells is approximately 10–25 nm. The shape of the peripheral cells varies with their location around the slug. In the posterior prespore zone, the peripheral cells are squamous and exhibit polarity along their antero-posterior axis. In the anterior prestalk zone, peripheral cells are less flattened, project irregular filipodia between internal cells, and are polarised along their apical-basal axis. Colloidal gold immunocytochemistry with the markers MUD1, MUD50 and MUD62 demonstrated that the peripheral layer is formed of prestalk cells in the anterior region and ventrum, and mostly prespore cells along the dorsum. Thus, the peripheral layer, while having specific cell classes in different regions, is not differentiation-specific. Rather, it appears that the structure of these epithelium-like cells is influenced by interaction with molecules of the ECM (sheath).

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3