Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable

Author:

Franck Z.1,Gary R.1,Bretscher A.1

Affiliation:

1. Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853.

Abstract

The band 4.1 superfamily of proteins show approx. 30% sequence identity in their amino-terminal region to the membrane binding domain of erythrocyte band 4.1. Within this superfamily are three members, ezrin, radixin and moesin, that show approx. 75% overall sequence identity. A comparison of the domain structure and intracellular localization of ezrin and moesin in cultured cells is reported here. Limited proteolytic digestion of ezrin or moesin yields a relatively stable 32 kDa domain derived from the amino-terminal region that is homologous to the protease-resistant membrane binding domain of erythrocyte band 4.1. The remaining regions of the two proteins give rise to very different fragments, suggesting that the secondary/tertiary structures of the two proteins are different in these regions. We have generated polyclonal antibodies that discriminate between ezrin and moesin, and do not react with radixin. All cultured cell lines investigated contain ezrin, whereas moesin is variably expressed. Cells that contain both ezrin and moesin show a very similar pattern: both proteins are enriched and colocalize with actin in cell surface structures. Ezrin is also detected in the cytoplasm. In cells with few or no surface structures, both proteins show a patchy distribution in regions of the cell that contain fine networks of actin filaments. No staining of focal contacts or adherens junctions was observed. These results, together with those of others, lead to the conclusion that, of the members of this protein family, only radixin is an authentic component of adherens junctions and focal contacts. Ezrin and moesin are both found in cell surface structures after treatment of human A431 cells with epidermal growth factor, and ezrin, but not moesin, becomes phosphorylated on tyrosine. This study shows that ezrin and moesin have a similar subcellular distribution in cultured cells, yet are distinguishable in their expression, structure and ability to serve as a kinase substrate.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3