A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence

Author:

Guido S.1,Tranquillo R.T.1

Affiliation:

1. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis 55455.

Abstract

Despite the likely role of contact guidance in every physiological process involving cell migration, its study in a three-dimensional tissue-equivalent environment has been precluded, heretofore, by inherent difficulties in systematically preparing well-defined contact guidance fields and quantifying the resultant contact guidance. Here, we describe a novel use of a magnetic field to orient collagen fibrils during fibrillogenesis, entrapping cells dispersed in the collagen solution. Using computer-controlled staging and image analysis, we show from automated birefringence measurements of the resultant slab of cell-populated gel contained in a specially designed observation chamber that the fibril orientation is biased along the long axis of the chamber uniformly throughout the chamber. Further, we show that the degree of fibril orientation, and consequently the elicited contact guidance, can be controlled by independently varying the magnetic field strength or temperature during fibrillogenesis. We characterize the contact guidance response to the imposed contact guidance field by measuring cell orientation relative to the axis of fibril orientation from still images obtained in time-lapse via automated image analysis. We present the first quantitative correlation of contact guidance (based on cell orientation) with collagen fibril orientation (based on birefringence) for human foreskin fibroblasts cultured in a collagen gel, by using gels of varying orientation resulting from different magnetic field strengths and temperatures during fibrillogenesis, and by using sufficiently low cell concentrations and early observation times.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference30 articles.

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3