Affiliation:
1. Laboratory of Cell and Developmental Biology, Faculty of Biosciences, Tokyo Institute of Technology, Yokohama, Japan.
Abstract
The microtubular cytoskeleton exhibits a dramatic reorganization, progressing from interphase radial arrays to a mitotic spindle at the G2/M transition. Although this reorganization has been suspected to be caused by maturation promoting factor (MPF: p34cdc2/cyclin B complex), little is known about how p34cdc2 kinase controls microtubule networks. We provide evidence of the direct association of the p34cdc2/cyclin B complex with microtubules in starfish oocytes. Anti-cyclin B staining of detergent-treated oocytes, isolated asters and meiotic spindles revealed fluorescence associated with microtubule fibers, chromosomes and centrosomes. Microtubules prepared from starfish oocytes were associated with cyclin B and p34cdc2 proteins. Microtubule-bound p34cdc2 and cyclin B were released from microtubules by a high-salt solution and possessed a complex form as shown by the adsorption to suc1-beads and by immunoprecipitation with the anti-cyclin B antibody. The p34cdc2/cyclin B complex associated to microtubules had high histone H1 kinase activity at meiotic metaphase. However, it was not necessary for the p34cdc2/cyclin B complex to be active for microtubule binding, as an inactive form in immature oocytes was also observed to bind to microtubules. The coprecipitation of suc1-column purified p34cdc2/cyclin B with purified porcine brain microtubules in the presence of starfish oocyte microtubule-associated proteins (MAPs) indicates that the association of p34cdc2/cyclin B with microtubules in vitro is mediated by MAPs.
Publisher
The Company of Biologists
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献