Association of p34cdc2/cyclin B complex with microtubules in starfish oocytes

Author:

Ookata K.1,Hisanaga S.1,Okumura E.1,Kishimoto T.1

Affiliation:

1. Laboratory of Cell and Developmental Biology, Faculty of Biosciences, Tokyo Institute of Technology, Yokohama, Japan.

Abstract

The microtubular cytoskeleton exhibits a dramatic reorganization, progressing from interphase radial arrays to a mitotic spindle at the G2/M transition. Although this reorganization has been suspected to be caused by maturation promoting factor (MPF: p34cdc2/cyclin B complex), little is known about how p34cdc2 kinase controls microtubule networks. We provide evidence of the direct association of the p34cdc2/cyclin B complex with microtubules in starfish oocytes. Anti-cyclin B staining of detergent-treated oocytes, isolated asters and meiotic spindles revealed fluorescence associated with microtubule fibers, chromosomes and centrosomes. Microtubules prepared from starfish oocytes were associated with cyclin B and p34cdc2 proteins. Microtubule-bound p34cdc2 and cyclin B were released from microtubules by a high-salt solution and possessed a complex form as shown by the adsorption to suc1-beads and by immunoprecipitation with the anti-cyclin B antibody. The p34cdc2/cyclin B complex associated to microtubules had high histone H1 kinase activity at meiotic metaphase. However, it was not necessary for the p34cdc2/cyclin B complex to be active for microtubule binding, as an inactive form in immature oocytes was also observed to bind to microtubules. The coprecipitation of suc1-column purified p34cdc2/cyclin B with purified porcine brain microtubules in the presence of starfish oocyte microtubule-associated proteins (MAPs) indicates that the association of p34cdc2/cyclin B with microtubules in vitro is mediated by MAPs.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3