Interaction of the human autoantigen p150 with splicing snRNPs

Author:

Blencowe B.J.1,Carmo-Fonseca M.1,Behrens S.E.1,Luhrmann R.1,Lamond A.I.1

Affiliation:

1. European Molecular Biology Laboratory, Heidelberg, Germany.

Abstract

An important goal of studies on pre-mRNA splicing is to identify factors that mediate the snRNP-snRNP and snRNP-pre-mRNA interactions that take place in the spliceosome. The U4/U6 snRNP is one of the four snRNPs that are subunits of spliceosomes. A rare patient autoimmune serum (MaS serum) has recently been identified that specifically immunoprecipitates U4/U6 snRNP from HeLa cell extracts through recognition of a 150 kDa autoantigen (p150) (Okano and Medsger, Journal of Immunology, 146, 535–542, 1991). Here we show that in addition to U4/U6 snRNP, p150 can also be detected associated with 20 S U5, U4/U6.U5 and 17 S U2 snRNPs, but not with U1 snRNP. In each particle p150 is present in sub-stoichiometric levels relative to the major snRNP proteins. We show that MaS serum selectively immunoprecipitates a sub-population of U4/U6 snRNPs in which the m3G-cap structure is masked and that p150 is preferentially associated with U6 snRNA in the U4/U6 particle. Anti-p150 antibodies show widespread nucleoplasmic staining, excluding nucleoli, with an elevated concentration in coiled bodies. This changes to a discrete punctate pattern when cells are treated with alpha-amanitin. Both the cytological and biochemical data indicate that the p150 autoantigen is a snRNP-associated factor in vivo. We also present biochemical evidence confirming that assembly of U4/U6 and U5 snRNPs into a U4/U6.U5 tri-snRNP particle is an integral step in the spliceosome assembly pathway. Addition of the purified U4/U6.U5 tri-snRNP restores splicing activity to inactivated HeLa nuclear extracts in which splicing had been inhibited by specific depletion of either the U4/U6 or U5 snRNPs.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3