Characterization of cadherin-4 and cadherin-5 reveals new aspects of cadherins

Author:

Tanihara H.1,Kido M.1,Obata S.1,Heimark R.L.1,Davidson M.1,St John T.1,Suzuki S.1

Affiliation:

1. Doheny Eye Institute, University of Southern California School of Medicine, Los Angeles 90033.

Abstract

Several properties of cadherin-4 and cadherin-5 were characterized by using the cDNA transfection approach. The proteins of both cadherins had a relative molecular mass of about 130 kDa and were present at the cell periphery, especially at cell-cell contact sites. These cadherins were easily digested with trypsin, and Ca2+ protected cadherin-4, but not cadherin-5, from the digestion. In immunoprecipitation, cadherin-4 co-precipitated with two major proteins of 105 kDa and 95 kDa, respectively. The 105 kDa and the 95 kDa proteins are likely to correspond to alpha- and beta-catenins. Cadherin-5 co-precipitated with only one major protein of 95 kDa, but seems to associate with the 105 kDa protein. On the other hand, plakoglobin or gamma-catenin did not co-precipitate well with either cadherin-4 or cadherin-5 in immunoprecipitation, but plakoglobin also appears to associated weakly with these cadherins. Cadherin-4 transfectants aggregated within 30 minutes in a cell aggregation assay, but cadherin-5 transfectants did not aggregate under the same conditions. Furthermore, the transfectants of chimeric cadherin-4 with cadherin-5 cytoplasmic domain showed cell aggregation activity comparable to that of wild-type cadherin-4 transfectants, whereas the transfectants of chimeric cadherin-5 with cadherin-4 cytoplasmic domain did not show appreciable cell aggregation, suggesting that the extracellular domains of cadherins, in conjunction with their cytoplasmic domains, play an important role in cell aggregation activity. These results show that cadherin-4 is very similar to the classical cadherins, whereas cadherin-5 is functionally as well as structurally distinct from classical cadherins.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3