Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support alpha 2 beta 1 binding, and mediation of adhesion to denatured collagen by a novel alpha 5 beta 1-fibronectin bridge

Author:

Tuckwell D.S.1,Ayad S.1,Grant M.E.1,Takigawa M.1,Humphries M.J.1

Affiliation:

1. School of Biological Sciences, University of Manchester, UK.

Abstract

The mechanism of interaction of chondrocytic cells with cartilage-specific type II collagen has been examined using HCS-2/8 human chondrosarcoma cells as a model system. By the criteria of specific collagen secretion and integrin expression profile, HCS-2/8 have a similar differentiated phenotype to normal chondrocytes and are therefore a good model system. HCS-2/8 cells were able to attach and spread on both native and heat-denatured pepsinised type II collagen, and assays using denatured cyanogen bromide fragments apparently localised the major cell binding site to the CB10 fragment. However, when they were used as soluble inhibitors, cyanogen bromide fragments were found to block adhesion to denatured collagen, but had no effect on either attachment or spreading on the native molecule. The inability of cyanogen bromide fragments to reproduce the cell binding site of native collagen demonstrated a strict dependence on collagen conformation. This was also reflected in the receptors that were employed by HCS-2/8 cells for binding to type II collagen: binding to native collagen was mediated by the integrin alpha 2 beta 1 while binding to denatured collagen was mediated by a novel alpha 5 beta 1-fibronectin bridge. The identification of this bridge adds to the mechanisms by which cells can bind to denatured collagens. The previously characterised KDGEA active site peptide from type I collagen was found to be inactive as an inhibitor of type II collagen-mediated adhesion. The implications of these findings for the strategies used to identify adhesive active sites within collagens are discussed. In particular, these data suggest that, unlike other integrin ligands, a synthetic peptide-based approach is not suitable for the identification of collagen active sites.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3