Mutants of the Drosophila ncd microtubule motor protein cause centrosomal and spindle pole defects in mitosis

Author:

Endow S.A.1,Chandra R.1,Komma D.J.1,Yamamoto A.H.1,Salmon E.D.1

Affiliation:

1. Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

Nonclaret disjunctional (ncd) is a kinesin-related microtubule motor protein required for meiotic and early mitotic chromosome distribution in Drosophila. ncd translocates on microtubules with the opposite polarity to kinesin, toward microtubule minus ends, and is associated with spindles in chromosome/spindle preparations. Here we report a new mutant of ncd caused by partial deletion of the predicted coiled-coil central stalk. The mutant protein exhibits a velocity of translocation and ability to generate torque in motility assays comparable to near full-length ncd, but only partially rescues a null mutant for chromosome mis-segregation. Antibody staining experiments show that the partial loss-of-function and null mutants cause centrosomal and spindle pole defects, including centrosome splitting and loss of centrosomes from spindle poles, and localize ncd to centrosomes as well as spindles of wild-type embryos. Association of ncd with spindles and centrosomes is microtubule- and cell cycle-dependent: inhibition of microtubule assembly with colchicine abolishes ncd staining and centrosomal staining is observed in prometaphase, metaphase and anaphase, but diminishes in late anaphase/telophase. The cell cycle dependence of centrosomal staining and the defects of mutants provide clear evidence for activity of the ncd motor protein near or at the spindle poles in mitosis. The ncd motor may interact with centrosomal microtubules and spindle fibers to attach centrosomes to spindle poles, and mediate poleward translocation (flux) of kinetochore fibers, a process that may underlie poleward movement of chromosomes in mitosis. Together with previous work, our findings indicate that ncd is important in maintaining spindle poles in mitosis as well as in meiosis.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3