Molecular genetic truncation analysis of filament assembly and phosphorylation domains of Dictyostelium myosin heavy chain

Author:

Lee R.J.1,Egelhoff T.T.1,Spudich J.A.1

Affiliation:

1. Department of Biochemistry, Stanford University School of Medicine, CA.

Abstract

Conventional myosin (‘myosin II’) is a major component of the cytoskeleton in a wide variety of eukaryotic cells, ranging from lower amoebae to mammalian fibroblasts and neutrophils. Gene targeting technologies available in the Dictyostelium discoideum system have provided the first genetic proof that this molecular motor protein is essential for normal cytokinesis, capping of cell surface receptors, normal chemotactic cell locomotion and morphogenetic shape changes during development. Although the roles of myosin in a variety of cell functions are becoming clear, the mechanisms that regulate myosin assembly into functional bipolar filaments within cells are poorly understood. Dictyostelium is currently the only system where mutant forms of myosin can be engineered in vitro, then expressed in their native context in cells that are devoid of the wild-type isoform. We have utilized this technology in combination with nested truncation and deletion analysis to map domains of the myosin tail necessary for in vivo and in vitro filament assembly, and for normal myosin heavy chain (MHC) phosphorylation. This analysis defines a region of 35 amino acids within the tail that is critical for filament formation both for purified myosin molecules and for myosin within the in vivo setting. Phosphorylation analysis of these mutants in intact cytoskeletons demonstrates that the carboxy-terminal tip of the myosin heavy chain is required for complete phosphorylation of the myosin tail.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3