Heterogeneity and microtubule interaction of the CHO1 antigen, a mitosis-specific kinesin-like protein. Analysis of subdomains expressed in insect sf9 cells

Author:

Kuriyama R.1,Dragas-Granoic S.1,Maekawa T.1,Vassilev A.1,Khodjakov A.1,Kobayashi H.1

Affiliation:

1. Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455.

Abstract

The CHO1 antigen is a mitosis-specific kinesin-like motor located at the interzonal region of the spindle. The human cDNA coding for the antigen contains a domain with sequence similarity to the motor domain of kinesin-like protein (Nislow et al., Nature 359, 543, 1992). Here we cloned cDNAs encoding the CHO1 antigen by immunoscreening of a CHO Uni-Zap expression library, the same species in which the original monoclonal antibody was raised. cDNAs of CHO cells encode a 953 amino acid polypeptide with a calculated molecular mass of 109 kDa. The N-terminal 73% of the antigen was 87% identical to the human clone, whereas the remaining 27% of the coding region showed only 48% homology. Insect Sf9 cells infected with baculovirus containing the full-length insert produced 105 and 95 kDa polypeptides, the same doublet identified as the original antigen in CHO cells. Truncated polypeptides corresponding to the N-terminal motor and C-terminal tail produced a 56 and 54 kDa polypeptide in Sf9 cells, respectively. Full and N-terminal proteins co-sedimented with, and caused bundling of, brain microtubules in vitro, whereas the C-terminal polypeptide did not. Cells expressing the N terminus formed one or more cytoplasmic processes. Immunofluorescence as well as electron microscopic observations revealed the presence of thick bundles of microtubules, which were closely packed, forming a marginal ring just beneath the cell membrane and a core in the processes. The diffusion coefficient and sedimentation coefficient were determined for the native CHO1 antigen by gel filtration and sucrose density gradient centrifugation, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3