Expression of neural cell adhesion molecule (N-CAM) in rat islets and its role in islet cell type segregation

Author:

Cirulli V.1,Baetens D.1,Rutishauser U.1,Halban P.A.1,Orci L.1,Rouiller D.G.1

Affiliation:

1. Laboratoires de Recherche Louis-Jeantet, University of Geneva Medical School, Switzerland.

Abstract

Endocrine cell types are non-randomly distributed within pancreatic islets of Langerhans. In the rat, insulin-secreting B-cells occupy the core of the islets and are surrounded by A-, D- and PP-cells, secreting glucagon, somatostatin and pancreatic polypeptide, respectively. Furthermore, dissociated islet cells have the ability in vitro to form aggregates with the same cell-type organization as native islets (pseudoislets). These observations suggest that a differential expression of cell adhesion molecules (CAMs) might characterize B- and non-B-cells (A-, D- and PP-cells), and be in part responsible for the establishment and maintenance of islet architecture. Indirect immunofluorescence using antibodies against CAMs and islet hormones was performed on serial sections of the splenic and duodenal parts of the rat pancreas. Staining for the Ca(2+)-dependent CAM E-cadherin was detected on both exocrine and endocrine tissue and was uniform over the entire islet section, in both pancreatic regions. By contrast, staining for the Ca(2+)-independent neural CAM (N-CAM) was restricted to endocrine tissue and nerve endings. Furthermore, N-CAM staining of endocrine cells was stronger in the islet periphery, a region composed mostly of non-B-cells. Serial sections demonstrate that cells staining strongly for N-CAM in the splenic part correspond to glucagon cells and in the duodenal part to pancreatic polypeptide cells. Within pseudoislets in vitro a stronger staining for N-CAM was also observed on peripheral cells, corresponding to non-B-cells.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3