Cytostellin distributes to nuclear regions enriched with splicing factors

Author:

Bregman D.B.1,Du L.1,Li Y.1,Ribisi S.1,Warren S.L.1

Affiliation:

1. Department of Pathology, Yale University School of Medicine, New Haven, CT 06510.

Abstract

Cytostellin, a approximately 240 kDa phosphoprotein found in all cells examined from human to yeast, is predominantly intranuclear in interphase mammalian cells and undergoes continuous redistribution during the cell cycle. Here, mammalian cytostellin is shown to localize to intranuclear regions enriched with multiple splicing proteins, including spliceosome assembly factor, SC-35. Cytostellin and the splicing proteins also co-localize to discrete foci (called ‘dots’), which are distributed throughout the cell during mitosis and part of G1. The cytostellin that is localized to these dots resists extraction by Triton X-100, indicating that it is tightly associated with insoluble cell structures. All immunostainable cytostellin reappears in the nucleus before S-phase. Although cytostellin and the splicing proteins co-localize in interphase and dividing cells, cytostellin is not detected in purified spliceosomes, and it associates with six unidentified proteins, forming a macromolecular complex that is biochemically distinct from the proteins that comprise spliceosomes. This macromolecular complex is detected at constant levels throughout the cell cycle, and the level of cytostellin protein remains constant during the cell cycle. Nevertheless, intranuclear cytostellin immunostaining fluctuates markedly during the cell cycle. The monoclonal antibody (mAb) H5 epitope of cytostellin is ‘masked’ in serum-starved cells, but 60 minutes after serum stimulation intense cytostellin immunoreactivity appears in the nuclear speckles. This rapid induction of cytostellin immunoreactivity in subnuclear regions enriched with many splicing factors, as well as accumulations of RNA polymerase II (Pol II) transcripts, suggests that cytostellin may have a function related to mRNA biogenesis.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3