Imaging subcellular structures of rat mammary carcinoma cells by scanning force microscopy

Author:

Pietrasanta L.I.1,Schaper A.1,Jovin T.M.1

Affiliation:

1. Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany.

Abstract

Scanning force microscopy (SFM) was used for imaging subcellular structures of cultured rat mammary carcinoma cells dried in air. Identification of cellular substructures was achieved by immunofluorescence and specific fluorescence probes. Cells grown attached to a glass support exhibited submicrometer thickness in the dried state. Inside the nuclear domain the nucleoli appeared as prominent conical protrusions. Membrane extensions, microspikes and microvilli were well preserved at the cell periphery after fixation in glutaraldehyde vapor and air-drying and were distinguishable either as isolated elements or intercellular communications. The plasma membrane and soluble proteins were selectively removed with nonionic detergent in a buffer system. The mitochondria were concentrated primarily in the perinuclear space and exhibited a well defined filamentous shape. Their identity was confirmed by specific fluorescence staining with rhodamine 123. In the membrane-free system achieved by dry-cleaving of the sample surface, the cytoskeletal network was resolved as a complex mesh of actin-containing fiber bundles interwoven with a filigree arrangement of thinner filaments. The smallest fibrous substructures revealed by SFM with the scanning tips used to date were approximately 8 to 10 nm in height and 80 nm in width.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference40 articles.

1. Problems associated with the preparation of whole mounts of cytoskeleton for high resolution electron microscopy.;Bell;Scan. Microsc,1989

2. Cytoskeletal elements of duck embryo fibroblasts revealed by detergent extraction.;Brown;J. Supramol. Struct,1976

3. Form and distribution of actin and myosin in non-muscle cells: A study using cultured chick embryo fibroblasts.;Buckley;J. Microsc,1976

4. Imaging cells with the atomic force microscope.;Butt;J. Struct. Biol,1990

5. Membrane-cytoskeleton interactions in animal cells.;Carraway;Biochim. Biophys. Acta,1989

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3