Tubulin and tektin in sea urchin embryonic cilia: pathways of protein incorporation during turnover and regeneration

Author:

Stephens R.E.1

Affiliation:

1. Marine Biological Laboratory, Woods Hole, MA 02543.

Abstract

Axonemal precursor tubulin is the major protein component of the detergent-soluble membrane/matrix fraction of sea urchin embryonic cilia. Its unusual abundance may reflect the rapid turnover of these cilia, a process that is further documented here. However, whether during induced regeneration or normal turnover and growth, most other newly synthesized axonemal proteins are not detectable in the membrane/matrix fraction, raising the question of how non-tubulin precursors transit the growing cilium to the distal tip where assembly is generally thought to occur. Three potential explanations were considered: (1) the assembly of these components is proximal; (2) their relative concentration is too low to detect; or (3) tubulin alone is conveyed via a membrane/matrix pathway while most other axonemal proteins are transported in association with the axoneme. Light microscope autoradiography of axonemes pulse-chase labeled with [3H]leucine showed relatively uniform labeling, with no evidence for proximal incorporation. Fully grown cilia and cilia at early stages of regeneration were isolated from labeled embryos, fractionated into membrane/matrix, axonemal tubulin and architectural remnant components, and their labeled protein compositions were compared. Heavily labeled axonemal proteins, most notably the integral microtubule doublet component tektin-A, were not detected in the membrane/matrix fraction of emerging cilia, even though nearly half of the total ciliary tubulin appeared in that fraction, arguing against membrane-associated or soluble matrix transit for the architectural proteins at low concentrations. However, after thermal fractionation of axonemes from growing cilia, labeled proteins characteristic of the architectural remnant dominated the solubilized microtubule fraction, supporting axoneme-associated transport of the non-tubulin proteins during growth, in contrast to a membrane/matrix pathway for tubulin.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3