Compartmentalization, processing and redistribution of the plasma membrane protein CE9 on rodent spermatozoa. Relationship of the annulus to domain boundaries in the plasma membrane of the tail

Author:

Cesario M.M.1,Bartles J.R.1

Affiliation:

1. Department of Cell, Molecular and Structural Biology, Northwestern University Medical School, Chicago, IL 60611.

Abstract

Western blotting, immunofluorescence and immunogold electron microscopy were used to examine the compartmentalization, processing and redistribution of the integral plasma membrane protein CE9 on the spermatozoa of rats, mice and hamsters. In each species examined, spermatozoal CE9 was found to undergo endoproteolytic processing followed by a net redistribution from the posterior-tail domain into the anterior-tail domain of the plasma membrane during epididymal maturation. Compared to spermatozoa of the rat and mouse, those of the hamster were found to express a greater proportion of their CE9 within the anterior-tail plasma membrane domain at all stages of maturation. As a consequence, CE9 was judged to be a suitable marker for two different spermatozoal plasma membrane domains: the posterior-tail plasma membrane domain (spermatozoa from the testis and caput epididymidis of the rat and mouse) and the anterior-tail domain (spermatozoa from the cauda epididymidis of the hamster). Immunogold electron microscopy was used to pinpoint the positions of the boundaries of these CE9-containing plasma membrane domains at a high level of resolution. In each case, the position of the CE9 domain boundary was found to be strongly correlated with that of the subplasmalemmal electron-dense ring known as the annulus. The precise spatial relationship between the CE9 domain boundary and the annulus was, however, found to differ significantly among species and/or as a function of maturation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3