Affiliation:
1. Department of Anatomy, Faculty of Medicine, Universite de Montreal, Quebec, Canada.
Abstract
Three chaperones, the chaperonins cpn10 and cpn60, and the hsp70 protein, were revealed by immunochemistry and cytochemistry in pancreatic rat acinar cells. Western immunoblotting analysis of rat pancreas homogenates has shown that antibodies against cpn10, cpn60 and hsp70 protein recognize single protein bands of 25 kDa, 60 kDa and 70 kDa, respectively. Single bands for the cpn10 and cpn60 were also detected in pancreatic juice. Immunofluorescence studies on rat pancreatic tissue revealed a strong positive signal in the apical region of the acinar cells for cpn10 and cpn60, while an immunoreaction was detected at the juxtanuclear Golgi region with the anti-hsp70 antibody. Immunocytochemical gold labeling confirmed the presence of these three chaperones in distinct cell compartments of pancreatic acinar cells. Chaperonin 10 and cpn60 were located in the endoplasmic reticulum, Golgi apparatus, condensing vacuoles and secretory granules. Interestingly, the labeling for both cpn10 and cpn60 followed the increasing concentration gradient of secretory proteins along the RER-Golgi-granule secretory pathway. On the contrary, the labeling for hsp70 was mainly concentrated in the endoplasmic reticulum and the Golgi apparatus. In the latter, the hsp70 was found to be primary located in the trans-most cisternae and to colocalize with acid phosphatase in the trans-Golgi network. The three chaperones were also present in mitochondria. In view of the role played by the chaperones in the proper folding, sorting and aggregation of proteins, we postulate that hsp70 assists the adequate sorting and packaging of proteins from the ER to the trans-Golgi network while cpn10 and cpn60 play key roles in the proper packaging and aggregation of secretory proteins as well as, most probably, in the prevention of early enzyme activation in secretory granules.
Publisher
The Company of Biologists
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献