Endocytosis in fission yeast is spatially associated with the actin cytoskeleton during polarised cell growth and cytokinesis

Author:

Gachet Yannick1,Hyams Jeremy S.1

Affiliation:

1. Department of Biology, University College London, Gower Street, London, WC1E 6BT, UK

Abstract

In the fission yeast, Schizosaccharomyces pombe, uptake of the fluorescent styryl dye FM4-64 via the endocytic pathway to the vacuole was localised to the poles of growing, interphase cells and to the cell equator during cell division, regions of cell wall deposition that are rich in actin. When the pattern of growth or the plane of cytokinesis was altered, the relationship between the actin cytoskeleton and the site of endocytosis was maintained. Transfer of the label to the vacuolar membrane was dependent upon the Rab GTPase Ypt7 and, hence, vesicle fusion. Endocytic vesicles transiently colocalised with actin patches and endocytosis was inhibited in mutants that affected actin patch integrity and by the actin inhibitor latrunculin A. Concentrations of latrunculin that removed actin cables but left patches unaffected had no effect on endocytosis at the poles, but abolished endocytosis at the cell equator. Equatorial, but not polar, endocytosis was also inhibited in cells lacking the formin For3 (which have selectively destabilised actin cables), in mutants of the exocyst complex and in cells treated with brefeldin A. Differential effects on endocytosis at the cell poles and equator were also observed in the actin mutant cps8 and the Arp2/3 complex mutant arp2. The redirection of endocytosis from the cell poles to the cell equator in M phase coincided with the anaphase separation of sister chromatids and was abolished in the septation initiation network (SIN) mutants cdc7, sid1 and sid2, demonstrating that the spatial reorganisation of the endocytic pathway in the S. pombe cell cycle requires a functional SIN pathway. We conclude that endocytosis in fission yeast has two distinct components, both of which are actin-based, but which are mechanistically distinct, as well as being spatially and temporally separated in the S. pombe cell cycle.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3