The functional architecture of the shark's dorsal-octavolateral nucleus:an in vitro study

Author:

Rotem Naama1,Sestieri Emanuel1,Cohen Dana2,Paulin Mike3,Meiri Hanoch4,Yarom Yosef14

Affiliation:

1. The Otto Loewi Center, the Inter University Institute, Eilat,Israel

2. The Gonda Interdisciplinary Brain Research Center, Bar Ilan University,Ramat Gan, Israel

3. Department of Zoology and Centre for Neuroscience, University of Otago,Dunedin, New Zealand

4. Department of Neurobiology, the Institute of Life Sciences, Hebrew University, Jerusalem, 91904, Israel

Abstract

SUMMARY Learning to predict the component in the sensory information resulting from the organism's own activity enables it to respond appropriately to unexpected stimuli. For example, the elasmobranch dorsal octavolateral nucleus (DON) can apparently extract the unexpected component (i.e. generated by nearby organisms) from the incoming electrosensory signals. Here we introduce a novel and unique experimental approach that combines the advantages of in vitro preparations with the integrity of in vivo conditions. In such an experimental system one can study, under control conditions, the cellular and network mechanisms that underlie cancellation of expected sensory inputs. Using extracellular and intracellular recordings we compared the dynamics and spatiotemporal organization of the electrosensory afferent nerve and parallel fiber inputs to the DON. The afferent nerve has a low threshold and high conduction velocity; a stimulus that recruits a small number of fibers is sufficient to activate the principal neurons. The excitatory postsynaptic potential in the principal cells evoked by afferent nerve fibers has fast kinetics that efficiently reach the threshold for action potential. In contrast, the parallel fibers have low conduction velocity, high threshold and extensive convergence on the principal neurons of the DON. The excitatory postsynaptic response has slow kinetics that provides a wide time window for integration of inputs. The highly efficient connection between the afferent nerve and the principal neurons in the DON indicates that filtration occurring in the DON cannot be mediated simply by summation of the parallel fibers' signals with the afferent sensory signals. Hence we propose that the filtering may be mediated via secondary neurons that adjust the principal neurons'sensitivity to afferent inputs.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3