Glucose uptake and metabolism by RBCs from fish with different extracellular glucose levels

Author:

Driedzic William R.1,Clow Kathy A.1,Short Connie E.1

Affiliation:

1. Memorial University of Newfoundland

Abstract

Summary The aim of the study was to assess if mechanisms of glucose trafficking by red blood cells (RBCs) relates to species specific extracellular glucose levels. Atlantic cod (Gadus morhua), Atlantic salmon (Salmo salar), cunner (Tautogolabrus adspersus), and short-horned sculpin (Myoxocephalus scorpius) had plasma glucose levels of 4 mmol l-1, 4.1 mmol l-1, 1.95 mmol l-1, and 0.73 mmol l-1, respectively. Glucose uptake by isolated RBCs was measured by the initial incorporation of [6-14C]-glucose and steady state glucose metabolism was determined by the production of 3H2O from [2-3H]-glucose. Saturation kinetics of glucose uptake and inhibition of both glucose uptake and metabolism by cytochalasin B and phloretin revealed that Atlantic cod, cunner, and sculpin RBCs all had a facilitated transport component to glucose trafficking. RBCs from Atlantic salmon showed a linear relationship between glucose uptake and extracellular glucose level but exhibited clear inhibition of glucose metabolism by cytochalasin B and phloretin suggesting a component of facilitated glucose transport that is more elusive to detect. The production of 3H2O was linear for at least 6 hr and as such presents a rigorous approach to measuring glycolytic rate. Steady state rates of glucose metabolism were achieved at extracellular levels of approximately 1 mmol l-1 glucose for RBCs from all species showing that within species normal extracellular glucose level is not a primary determinant of basal level of glycolysis. At physiological levels of extracellular glucose the ratio of initial glucose uptake to glucose metabolism was 1.5 to 4 for all RBCs suggesting that there is scope to increase metabolic rate without alteration of the basal glucose uptake capacity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3