Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling

Author:

Häärä Otso1,Harjunmaa Enni1,Lindfors Päivi H.1,Huh Sung-Ho2,Fliniaux Ingrid1,Åberg Thomas1,Jernvall Jukka1,Ornitz David M.2,Mikkola Marja L.1,Thesleff Irma1

Affiliation:

1. Developmental Biology Program, Institute of Biotechnology, University of Helsinki, POB 56, 00014 Helsinki, Finland.

2. Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA.

Abstract

Uncovering the origin and nature of phenotypic variation within species is the first step in understanding variation between species. Mouse models with altered activities of crucial signal pathways have highlighted many important genes and signal networks regulating the morphogenesis of complex structures, such as teeth. The detailed analyses of these models have indicated that the balanced actions of a few pathways regulating cell behavior modulate the shape and number of teeth. Currently, however, most mouse models studied have had gross alteration of morphology, whereas analyses of more subtle modification of morphology are required to link developmental studies to evolutionary change. Here, we have analyzed a signaling network involving ectodysplasin (Eda) and fibroblast growth factor 20 (Fgf20) that subtly affects tooth morphogenesis. We found that Fgf20 is a major downstream effector of Eda and affects Eda-regulated characteristics of tooth morphogenesis, including the number, size and shape of teeth. Fgf20 function is compensated for by other Fgfs, in particular Fgf9 and Fgf4, and is part of an Fgf signaling loop between epithelium and mesenchyme. We showed that removal of Fgf20 in an Eda gain-of-function mouse model results in an Eda loss-of-function phenotype in terms of reduced tooth complexity and third molar appearance. However, the extra anterior molar, a structure lost during rodent evolution 50 million years ago, was stabilized in these mice.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3