Ion-motive ATPases and active, transbranchial NaCl uptake in the red freshwater crab,Dilocarcinus pagei(Decapoda,Trichodactylidae)

Author:

Weihrauch Dirk1,McNamara John Campbell2,Towle David W.3,Onken Horst4

Affiliation:

1. Department of Animal Physiology, University of Osnabrueck, 49076 Osnabrueck, Germany

2. Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo,Brasil

3. Mount Desert Island Biological Laboratory, Salsbury Cove, ME 04672,USA

4. School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA

Abstract

SUMMARYThe present investigation examined the microanatomy and mRNA expression and activity of ion-motive ATPases, in anterior and posterior gills of a South American, true freshwater crab, Dilocarcinus pagei. Like diadromous crabs, the anterior gills of this hololimnetic trichodactylid exhibit a highly attenuated (2–5 μm), symmetrical epithelium on both lamellar surfaces. In sharp contrast, the posterior gill lamellar epithelia are markedly asymmetrical. Their proximal side consists of thick (18–20μm) cells, displaying features typical of a transporting epithelium, while the distal epithelium is thin (3–10 μm) and formed entirely by apical pillar cell flanges. Both anterior and posterior gills express Na+/K+- and V-ATPases. Phylogenetic analysis of partial cDNA sequences for the Na+/K+-ATPase α-subunit and V-ATPase B-subunit among various crab species confirmed the previous classification and grouping of D. pagei based on morphological criteria. Semi-quantitative RT-PCR clearly showed that mRNA for both ion pump subunits is more intensely expressed in posterior gills. Na+/K+-ATPase activity in the posterior gills was nearly fourfold that of anterior gills, while V-ATPase and F-ATPase activities did not differ. A negative short-circuit current (Isc) was measured using the distal side of split, posterior gill lamellae, mounted in a modified Ussing chamber and perfused symmetrically with identical hemolymph-like salines. Although hemolymph-side ouabain did not affect this current, concanamycin significantly reduced Isc without altering preparation conductance, suggesting V-ATPase-driven Cl– absorption on the distal side of the posterior gill lamellae, as known to occur in diadromous crabs adapted to freshwater. These findings suggest that active Na+ uptake predominates across the thick proximal epithelium, and Cl– uptake across the thin,distal epithelium of the posterior gill lamellae.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3