A Rapidly Sedimenting Fraction of Rat Liver Endoplasmic Reticulum

Author:

LEWIS J. A.1,TATA J. R.1

Affiliation:

1. National Institute for Medical Research, Mill Hill, London, NW7 1AA, U.K

Abstract

Balance-sheet experiments carried out to account for the distribution of endoplasmic reticulum fragments during subcellular fractionation of rat liver showed that a large proportion of these fragments are present in the pellets of low-speed centrifugation. Using glucose-6-phosphatase and RNA as markers we found that approximately 50% of the fragments of endoplasmic reticulum sedimented in the pellet of a 640-g centrifugation, 10% in that of a 6000-g centrifugation and 35% in the pellet of a 105000-g centrifugation. Starvation of the animals before use did not alter this distribution, nor did the use of more vigorous homogenization conditions. We have developed a procedure for removing nuclei and erythrocytes from the material sedimenting at 640g to give a fraction (rapidly sedimenting ER fraction or RS-ER) similar to the standard microsomal preparation. Centrifugation of this RS-ER fraction over 1.3 M sucrose yields subfractions of high and low RNA content analogous to the rough and smooth microsomal fractions. Electron-microscopic studies showed that, whereas the rough microsomal fraction consisted of ribosome-studded vesicles of varying size and content density, the rough RS-ER fraction contained a mixture of mitochondria and double lamellar membranes with ribosomes attached. These double lamellar membranes closely resemble the endoplasmic reticulum of intact rat liver. The double lamellar membranes are frequently observed grouped in stacks and in close association with the mitochondria. The significance of the association between endoplasmic reticulum and mitochondria of the RS-ER fraction and the relation between it and the standard microsomal preparation are discussed.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3