Do naked mole rats accumulate a metabolic acidosis or an oxygen debt in severe hypoxia?

Author:

Pamenter Matthew E.123ORCID,Dzal Yvonne A.34,Thompson William A.35,Milsom William K.3ORCID

Affiliation:

1. Department of Biology, University of Ottawa, Ottawa, ON, Canada

2. University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada

3. Department of Zoology, University of British Columbia, Vancouver, BC, Canada

4. Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, MB, Canada

5. Department of Biology, University of Calgary, Calgary, AB, Canada

Abstract

In severe hypoxia, most vertebrates increase anaerobic energy production, which results in the development of a metabolic acidosis and an O2 debt that must be repaid during reoxygenation. Naked mole rats (NMRs) are among the most hypoxia-tolerant mammals, capable of drastically reducing their metabolic rate in acute hypoxia; while staying active and alert. We hypothesized that a key component of remaining active is an increased reliance on anaerobic metabolism during severe hypoxia. To test this hypothesis, we exposed NMRs to progressive reductions in inspired O2 (9 to 3% O2) followed by reoxygenation (21% O2) and measured breathing frequency, heart rate, behavioural activity, body temperature, metabolic rate, and also metabolic substrates and pH in blood and tissues. We found that NMRs exhibit robust metabolic rate depression in acute hypoxia, accompanied by declines in all physiological and behavioural variables examined. However, blood and tissue pH were unchanged and tissue [ATP] and [phosphocreatine] were maintained. Naked mole rats increased their reliance on carbohydrates in hypoxia, and glucose was mobilized from the liver to the blood. Upon reoxygenation NMRs entered into a coma-like state for∼15-20 mins during which metabolic rate was negligible and body temperature remained suppressed. However, an imbalance in the rates at which V̇O2 and V̇CO2 returned to normoxic levels during reoxygenation hint at the possibility that NMRs do utilize anaerobic metabolism during hypoxia but have a tissue and/or blood buffering capacity that mask typical markers of metabolic acidosis, and prioritize the synthesis of glucose from lactate during recovery.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3