Unravelling the ultrastructure of stress granules and associated P-bodies in human cells

Author:

Souquere Sylvie1,Mollet Stéphanie1,Kress Michel1,Dautry François1,Pierron Gérard1,Weil Dominique1

Affiliation:

1. CNRS FRE2937, Institut André Lwoff, 94800 Villejuif, France

Abstract

Stress granules are cytoplasmic ribonucleoprotein granules formed following various stresses that inhibit translation. They are thought to help protecting untranslated mRNAs until stress relief. Stress granules are frequently seen adjacent to P-bodies, which are involved in mRNA degradation and storage. We have previously shown in live cells that stress granule assembly often takes place in the vicinity of pre-existing P-bodies, suggesting that these two compartments are structurally related. Here we provide the first ultrastructural characterization of stress granules in eukaryotic cells by electron microscopy. Stress granules resulting from oxidative stress, heat-shock or protein overexpression are loosely organised fibrillo-granular aggregates of a moderate electron density, whereas P-bodies are denser and fibrillar. By in situ hybridization at the electron microscopic level, we show that stress granules are enriched in poly(A)+ mRNAs, although these represent a minor fraction of the cellular mRNAs. Finally, we show that, despite close contact with P-bodies, both domains remain structurally distinct and do not interdigitate.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3