Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells

Author:

Nagai R.,Hayama T.

Abstract

Previous investigators have proposed that cytoplasmic streaming in Chara internodal cells results from the interaction between an endoplasmic factor and fibrils composed of microfilaments in the stationary cortex. Using the internal perfusion technique, we confirmed the observation that organelles which had been attached to the fibrils by decreasing the internal concentration of ATP moved along the fibrils after ATP was introduced. Thin-sectioned specimens revealed that endoplasmic organelles of various shapes were linked to microfilament bundles in the absence of ATP. Linkage was effected by regularly arranged electron-dense materials with a spacing of 100–130 nm at definite regions on each organelle. The organelles in question were studied in negatively stained preparations of endoplasm. The organelles had some common features. (1) They were all membrane-limited.(2) Their sizes and configurations varied largely. (3) One or more protuberances were present on them. (4) The protuberances were usually rod- or horn-like. (5) Small globular bodies 20–30 nm in diameter were found in ordered array with the same spacing as those in thin sections at the surface of the protuberances. (6) Many fine filaments were always attached to the surface of the protuberances. These fine filaments differed from F-actin in diameter (less than 4 nm) and inability to react with heavy meromyosin from rabbit skeletal muscle. The role of such components of the organelles in cytoplasmic streaming is discussed. A paracrystalline array of microfilaments with a transverse periodicity of about 38 nm is presented, together with its optical diffraction pattern.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3