Preaggregative cell motion in Dictyostelium

Author:

Potel M.J.,Mackay S.A.

Abstract

The motions of a large number (495) of preaggregative D. discoideum NC-4 cells in sparse fields are recorded on time-lapse film and analysed using a specially constructed computer graphics system. All films are produced under a standard set of conditions, so that the range of cell behaviours under given conditions can be characterized. The mean velocity of pre-aggregative D. discoideum NC-4 is 7.19 micrometers/min. The mean velocity time course has a significant early peak at about 3 h. The distribution of mean velocities is fairly broad with a long high velocity tail. A modified random walk model using the parameters diffusion constant and persistence time describes well the changes in cell direction with time. Persistence can be described as an exponentially distributed ‘memory’ of movement direction, with a mean of 4.89 min. High velocity cells never have long persistence times, and persistence time shows no relationship with age. A nearest neighbour model of cell spacing shows that cells are randomly (Poisson) distributed at low densities. Measurements of cell contacts are compared to a simple model of contact frequency based on the kinetic theory of gases to show that cells at low densities have an affinity for making collisions. The length of contact durations is indicative of some mechanical adhesion between cells, and cells in contact move significantly though not dramatically slower. A cross-correlation analysis shows that the various parameters of motion are significantly interrelated in numerous ways. Finally mutants and strains related to D. discoideum NC-4 exhibit a number of new behaviours, suggesting that motion is a distinctive characteristic of cell type.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3