Integration within and between muscles during terrestrial locomotion:effects of incline and speed

Author:

Higham Timothy E.1,Biewener Andrew A.1

Affiliation:

1. Department of Organismic and Evolutionary Biology, Concord Field Station,Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA

Abstract

SUMMARYAnimals must continually adapt to varying locomotor demands when moving in their natural habitat. Despite the dynamic nature of locomotion, little is known about how multiple muscles, and different parts of a muscle, are functionally integrated as demand changes. In order to determine the extent to which synergist muscles are functionally heterogeneous, and whether this heterogeneity is altered with changes in demand, we examined the in vivo function of the lateral (LG) and medial (MG) gastrocnemius muscles of helmeted guinea fowl (Numida meleagris) during locomotion on different inclines (level and uphill at 14°) and at different speeds (0.5 and 2.0 m s–1). We also quantified function in the proximal(pMG) and distal (dMG) regions of the MG to examine the extent to which a single muscle is heterogeneous. We used electromyography, sonomicrometry and tendon force buckles to quantify activation, length change and force patterns of both muscles, respectively. We show that the LG and MG exhibited an increase in force and stress with a change in gait and an increase in locomotor speed, but not with changes in incline. While the LG and MG exhibited similar levels of stress when walking at 0.5 m s–1,stress in the LG was 1.8 times greater than in the MG when running at 2.0 m s–1. Fascicle shortening increased with an increase in speed on both inclines for the LG, but only on the level for the pMG. Positive work performed by the LG exceeded that of the pMG and dMG for all conditions, and this difference was magnified when locomotor speed increased. Within the MG,the pMG shortened more, and at a faster rate than the dMG, resulting in a greater amount of positive work performed by the pMG. Mean spike amplitude of the electromyogram (EMG) bursts increased for all muscle locations with an increase in speed, but changes with incline were more variable. The functional differences between the LG and MG are likely due to the different moments each exerts at the knee, as well as differences in motor unit recruitment. The differences within the MG are likely due to motor unit recruitment differences, but also differences in architecture. Fascicles within the dMG insert into an extensive aponeurosis, which results in a higher apparent dynamic stiffness relative to fascicles operating within the pMG. On the level surface, the greater compliance of the pMG leads to increased stretch of its fascicles at the onset of force, further enhancing force production. Our results demonstrate the capacity for functional diversity between and within muscle synergists, which occur with changes in gait, speed and grade.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3