Acetylcholine-Activated Ion Channels in Embryonic Cockroach Neurones Growing in Culture

Author:

BEADLE DAVID J.1,HORSEMAN G.1,PICHON Y.1,AMAR M.1,SHIMAHARA T.1

Affiliation:

1. School of Biological and Molecular Sciences, Oxford Polytechnic Headington, Oxford, UK and Laboratoire de Neurobiologie Cellulaire et Moleculaire, Centre National de la Recherche Scientifique Gif-sur-Yvette, F-91190, France

Abstract

Application of acetylcholine and carbamylcholine to cultured cockroach neurones held under whole-cell voltage-clamp conditions evoked an inward current that was accompanied by an increase in current noise. Fluctuation analysis of the noise revealed the existence of two Lorentzian components in acetylcholine, of corner frequencies 10 ± 0.6 Hz and 116 ± 9 Hz, and one Lorentzian component in carbamylcholine, of corner frequency 35 ± 13 Hz. Single-channel analysis of the unitary currents evoked by acetylcholine or carbamylcholine in neurones held in the cell-attached mode of the patch-clamp technique revealed the presence of two categories of channel events. The large events had mean currents of 4.77 pA with acetylcholine and 5.09 pA with carbamylcholine, and the small events 1.92 pA (acetylcholine) and 1.72pA (carbamylcholine) for a hyperpolarization of 60 mV. The reversal potentials for these currents relative to the resting potential were estimated to be - 70 mV for acetylcholine and - 68 mV for carbamylcholine, and the conductance values calculated from the I/V curves were 37 pS (large) and 19 pS (small) for acetylcholine and 52 pS (large) and 15 pS (small) for carbamylcholine. It is concluded that embryonic cockroach neurones growing in vitro possess two populations of acetylcholine-activated ion channels, and the possibility that one of these represents an embryonic receptor and the other an adult receptor is discussed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3