Mechanical force modulates global gene expression and β-catenin signaling in colon cancer cells

Author:

Avvisato Christopher L.12,Yang Xiang2,Shah Salim2,Hoxter Becky2,Li Weiqun2,Gaynor Richard3,Pestell Richard2,Tozeren Aydin4,Byers Stephen W.2

Affiliation:

1. Department of Biomedical Engineering, The Catholic University of America, Washington, DC, USA

2. Departments of Oncology, Biochemistry, Molecular and Cellular Biology, Georgetown University School of Medicine and Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA

3. Simmons Cancer Center, University of Texas Southwestern, Dallas, TX, USA

4. School of Engineering, Drexel University, Philadelphia, PA, USA

Abstract

At various stages during embryogenesis and cancer cells are exposed to tension, compression and shear stress; forces that can regulate cell proliferation and differentiation. In the present study, we show that shear stress blocks cell cycle progression in colon cancer cells and regulates the expression of genes linked to the Wnt/β-catenin, mitogen-activated protein kinase (MAPK) and NFκB pathways. The shear stress-induced increase of the secreted Wnt inhibitor DKK1 requires p38 and activation of NFκB requires IκB kinase-β. Activation of β-catenin, important in Wnt signaling and the cause of most colon cancers, is inhibited by shear stress through a pathway involving laminin-5, α6β4 integrin, phosphoinositide 3-kinase (PI 3-kinase) and Rac1 coupled with changes in the distribution of dephosphorylated β-catenin. These data show that colon cancer cells respond to fluid shear stress by activation of specific signal transduction pathways and genetic regulatory circuits to affect cell proliferation, and indicate that the response of colon cancers to mechanical forces such as fluid shear stress should be taken into account in the management of the disease.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3