Functional significance of the uncinate processes in birds

Author:

Tickle Peter G.1,Ennos A. Roland1,Lennox Laura E.1,Perry Steven F.2,Codd Jonathan R.1

Affiliation:

1. Faculty of Life Sciences, University of Manchester, Jackson's Mill, PO Box 88, Sackville Street, Manchester M60 1QD, UK

2. Institute for Zoology, Bonn University, Germany

Abstract

SUMMARYThe functional significance of the uncinate processes to the ventilatory mechanics of birds was examined by combining analytical modeling with morphological techniques. A geometric model was derived to determine the function of the uncinate processes and relate their action to morphological differences associated with locomotor specializations. The model demonstrates that uncinates act as levers, which improve the mechanical advantage for the forward rotation of the dorsal ribs and therefore lowering of the sternum during respiration. The length of these processes is functionally important;longer uncinate processes increasing the mechanical advantage of the Mm. appendicocostales muscle during inspiration. Morphological studies of four bird species showed that the uncinate process increased the mechanical advantage by factors of 2–4. Using canonical variate analysis and analysis of variance we then examined the variation in skeletal parameters in birds with different primary modes of locomotion (non-specialists, walking and diving). Birds clustered together in distinct groups, indicating that uncinate length is more similar in birds that have the same functional constraint, i.e. specialization to a locomotor mode. Uncinate processes are short in walking birds, long in diving species and of intermediate length in non-specialist birds. These results demonstrate that differences in the breathing mechanics of birds may be linked to the morphological adaptations of the ribs and rib cage associated with different modes of locomotion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3