Morphology predicts suction feeding performance in centrarchid fishes

Author:

Carroll Andrew M.1,Wainwright Peter C.1,Huskey Stephen H.2,Collar David C.1,Turingan Ralph G.3

Affiliation:

1. Section of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA

2. Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA

3. Department of Biological Sciences, Florida Institute of Technology,Melbourne, FL 32901, USA

Abstract

SUMMARYSuction feeding fish differ in their capacity to generate subambient pressure while feeding, and these differences appear to relate to morphological variation. We developed a morphological model of force transmission in the fish head and parameterized it with measurements from individual fish. The model was applied to 45 individuals from five species of centrarchid fishes: Lepomis macrochirus, Lepomis punctatus, Lepomis microlophus, Micropterus salmoides and Pomoxis nigromaculatus. Measurements of epaxial cross-sectional area, epaxial moment arm, buccal area and buccal area moment arm were combined to estimate pressure generation capacity for individual fish. This estimation was correlated with pressure measured in fish feeding on elusive prey to test the model's ability to predict pressure generation from morphology. The model explained differences in pressure generation found among individuals (P<0.001, r2=0.71) and produced a realistic estimate of normalized muscle stress during suction feeding (68.5±6.7 kPa). Fish with smaller mouths, larger epaxial cross-sectional area and longer epaxial moments, such as L. macrochirus (bluegill sunfish), generated lower pressures than fish with larger mouths, smaller cross-sectional area and shorter moments,such as M. salmoides (largemouth bass). These results reveal a direct trade-off between morphological requirements of feeding on larger prey (larger mouth size relative to body depth) and the ability to generate subambient pressure while suction feeding on elusive prey.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 214 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3