Apoptosis in budding yeast caused by defects in initiation of DNA replication

Author:

Weinberger Martin1,Ramachandran Lakshmi1,Feng Li1,Sharma Karuna2,Sun Xiaolei1,Marchetti Maria2,Huberman Joel A.2,Burhans William C.1

Affiliation:

1. Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA

2. Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA

Abstract

Apoptosis in metazoans is often accompanied by the destruction of DNA replication initiation proteins, inactivation of checkpoints and activation of cyclin-dependent kinases, which are inhibited by checkpoints that directly or indirectly require initiation proteins. Here we show that, in the budding yeast Saccharomyces cerevisiae, mutations in initiation proteins that attenuate both the initiation of DNA replication and checkpoints also induce features of apoptosis similar to those observed in metazoans. The apoptosis-like phenotype of initiation mutants includes the production of reactive oxygen species (ROS) and activation of the budding-yeast metacaspase Yca1p. In contrast to a recent report that activation of Yca1p only occurs in lysed cells and does not contribute to cell death, we found that, in at least one initiation mutant, Yca1p activation occurs at an early stage of cell death (before cell lysis) and contributes to the lethal effects of the mutation harbored by this strain. Apoptosis in initiation mutants is probably caused by DNA damage associated with the combined effects of insufficient DNA replication forks to completely replicate the genome and defective checkpoints that depend on initiation proteins and/or replication forks to restrain subsequent cell-cycle events until DNA replication is complete. A similar mechanism might underlie the proapoptotic effects associated with the destruction of initiation and checkpoint proteins during apoptosis in mammals, as well as genome instability in initiation mutants of budding yeast.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3