Oncostatin M induces basic fibroblast growth factor expression in endothelial cells and promotes endothelial cell proliferation, migration and spindle morphology

Author:

Wijelath E.S.1,Carlsen B.1,Cole T.1,Chen J.1,Kothari S.1,Hammond W.P.1

Affiliation:

1. Hope Heart Institute and Providence Medical Center, Department of Molecular Biology, Seattle, WA 98122, USA.

Abstract

Oncostatin M (OSM), a pleiotropic cytokine originally isolated from supernatants of the U937 histiocytic lymphoma cell line, has been shown to have regulatory effects on a wide variety of cultured and tumor cells. We investigated the effects of OSM on basic fibroblast growth factor (bFGF) gene expression in bovine arterial endothelial (BAE) cells. Levels of bFGF mRNA transcripts were low in uninduced BAE cells, were maximal at 8 hours of exposure to OSM, and returned to control levels by 24 hours. Induction of bFGF mRNA transcripts by OSM was dose-dependent. Nuclear transcriptional run-on analysis demonstrated that exposure of BAE cells to OSM stimulated bFGF gene transcription. OSM treatment of BAE cells enhanced the synthesis of bFGF protein as determined by ELISA assays. Immunocytochemistry studies demonstrated the presence of low levels of bFGF protein within the cytoplasm in uninduced cells. After stimulation for 8 hours with OSM there was significant staining for bFGF in the cytoplasm. However, 24 hours after exposure to OSM, bFGF antigen was located only within the nuclei. Western blot analysis demonstrated that OSM stimulated predominantly the synthesis of a 22 kDa form of bFGF. In addition, OSM stimulated endothelial cell proliferation and migration as well as acquisition of a spindle shape. Phosphorothioate antisense oligonucleotide directed against bFGF inhibited OSM induced BAE cell proliferation and spindle shape formation but had only a minimal effect on migration. The levels of the 22 kDa form of bFGF were reduced by antisense treatment indicating that OSM induced proliferation and morphology change is likely to be regulated by intracellular bFGF. Our studies suggest that OSM released at sites of vascular injury could stimulate angiogenesis by inducing bFGF synthesis, endothelial cell proliferation and migration.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3