Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type

Author:

Rajnicek A.1,Britland S.1,McCaig C.1

Affiliation:

1. Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK. a.m.rajnicek@abdn.ac.uk

Abstract

We used an in vitro system that eliminates competing guidance cues found in embryos to determine whether substratum topography alone provides important neurite guidance information. Dissociated embryonic Xenopus spinal cord neurons and rat hippocampal neurons were grown on quartz etched with a series of parallel grooves. Xenopus neurites grew parallel to grooves as shallow as 14 nm and as narrow as 1 microm. Hippocampal neurites grew parallel to deep, wide grooves but perpendicular to shallow, narrow ones. Grooved substrata determined the sites at which neurites emerged from somas: Xenopus neurites sprouted from regions parallel to grooves but presumptive axons on rat hippocampal neurons emerged perpendicular to grooves and presumptive dendrites emerged parallel to them. Neurites grew faster in the favored direction of orientation and turned through large angles to align on grooves. The frequency of perpendicular alignment of hippocampal neurites depended on the age of the embryos from which neurons were isolated, suggesting that contact guidance is regulated in development. Collectively, the data indicate that substratum topography is a potent morphogenetic factor for developing CNS neurons and suggest that in addition to a role in pathfinding the geometry of the embryo assists in establishing neuronal polarity. In the companion paper (A. M. Rajnicek and C. D. McCaig (1997) J. Cell Sci. 110, 2915–2924) we explore the cellular mechanism for contact guidance of growth cones.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 225 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3