A heterotrimeric G protein-phospholipase A2 signaling cascade is involved in the regulation of peroxisomal motility in CHO cells

Author:

Huber C.1,Saffrich R.1,Anton M.1,Passreiter M.1,Ansorge W.1,Gorgas K.1,Just W.1

Affiliation:

1. Biochemie-Zentrum, Universitat Heidelberg, D-69120 Heidelberg, Germany.

Abstract

Peroxisomal motility was studied in vivo in CHO cells following transfection with a green fluorescent protein construct containing the C-terminal peroxisomal targeting signal 1 (GFP-PTS1). Time-lapse imaging and evaluation of difference images revealed that peroxisomes attach to microtubules in a Ca2+ requiring step and are transported in an ATP-dependent manner. Following microinjection of guanosine-5′-O-(3-thiotri-phosphate) (GTP(gamma)S), peroxisomal movements were arrested, indicating regulation by GTP-binding proteins. The effect of GTP(gamma)S was mimicked by AlF4- and mastoparan, two drugs which are known to activate heterotrimeric G proteins. Pertussis toxin which prevents Gi/Go protein activation completely abolished the effect of GTP(gamma)S and mastoparan on peroxisomal motility suggesting that the G protein belongs to the Gi/Go class. At least one effector of the G protein is phospholipase A2 as demonstrated by the observation that the phospholipase A2 activating protein peptide efficiently blocks peroxisomal motility, and that the effect of mastoparan and AlF4- is largely abolished by various phospholipase A2 inhibitors. In summary, these data provide evidence for a new type of regulation of organelle motility mediated by a Gi/Go-phospholipase A2 signaling pathway. This type of regulation has not been observed so far with other cell organelles such as mitochondria, the endoplasmic reticulum or axonal vesicles. Thus, motility is regulated individually for each cell organelle by distinct mechanisms enabling the cell to fulfill its vital functions.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3