Affiliation:
1. Laboratoire d'Enzymologie des Acides Nucleiques, Institut de Genetique et Microbiologie, URA 2225 CNRS, Universite Paris-Sud, Orsay, France. duguet@igmors.u-psud.fr
Abstract
Several examples of direct interactions between helicases and topoisomerases have recently been described. The data suggest a possible cooperation between these enzymes in major DNA events such as the progression of a replication fork, segregation of newly replicated chromosomes, disruption of nucleosomal structure, DNA supercoiling, and finally recombination, repair, and genomic stability. A first example is the finding of a strong interaction between T antigen and topoisomerase I in mammalian cells, that may trigger unwinding of the parental DNA strands at the replication forks of Simian Virus 40. A second example is the reverse gyrase from thermophilic prokaryotes, composed of a putative helicase domain, and a topoisomerase domain in the same polypeptide. This enzyme may be required to maintain genomic stability at high temperature. A third example is the finding of an interaction between type II topoisomerase and the helicase Sgs1 in yeast. This interaction possibly allows the faithful segregation of newly replicated chromosomes in eukaryotic cells. A fourth example is the interaction between the same helicase Sgs1 and topoisomerase III in yeast, that may control recombination level and genetic stability of repetitive sequences. Recently, in humans, mutations in genes similar to Sgs1 have been found to be responsible for Bloom's and Werner's syndromes. The cooperation between helicases and topoisomerases is likely to be extended to many aspects of DNA mechanisms including chromatin condensation/decondensation.
Publisher
The Company of Biologists
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献