Polarity sorting of actin filaments in cytochalasin-treated fibroblasts

Author:

Verkhovsky A.B.1,Svitkina T.M.1,Borisy G.G.1

Affiliation:

1. Laboratory of Molecular Biology, University of Wisconsin, Madison 53706, USA. P2

Abstract

The polarity of actin filaments is fundamental for the subcellular mechanics of actin-myosin interaction; however, little is known about how actin filaments are oriented with respect to myosin in non-muscle cells and how actin polarity organization is established and maintained. Here we approach these questions by investigating changes in the organization and polarity of actin relative to myosin II during actin filament translocation. Actin and myosin II reorganization was followed both kinetically, using microinjected fluorescent analogs of actin and myosin, and ultrastructurally, using myosin S1 decoration and immunogold labelling, in cultured fibroblasts that were induced to contract by treatment with cytochalasin D. We observed rapid (within 15 minutes) formation of ordered actin filament arrays: short tapered bundles and aster-like assemblies, in which filaments had uniform polarity with their barbed ends oriented toward the aggregate of myosin II at the base of a bundle or in the center of an aster. The resulting asters further interacted with each other and aggregated into bigger asters. The arrangement of actin in asters was in sharp contrast to the mixed polarity of actin filaments relative to myosin in non-treated cells. At the edge of the cell, actin filaments became oriented with their barbed ends toward the cell center; that is, the orientation was opposite to what was observed at the edge of nontreated cells. This rearrangement is indicative of relative translocation of actin and myosin II and of the ability of myosin II to sort actin filaments with respect to their polarity during translocation. The results suggest that the myosin II-actin system of non-muscle cells is organized as a dynamic network where actin filament arrangement is defined in the course of its interaction with myosin II.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3