Affiliation:
1. Department of Food Biophysics, Institute of Food Research, Norwich Research Park, UK.
Abstract
Compartmentalization of surface membrane antigens into discrete regions or domains is a characteristic feature of differentiated cells. In mammalian spermatozoa at least 5 surface domains are known, implying the presence of barriers or boundaries within the plasma membrane. Using the technique of fluorescence recovery after photobleaching (FRAP) to measure diffusibility of fluorescent lipid analogues 1,1′-dihexadecyl-3,3,3′3′-tetramethylindocarbocyanine (DiIC[16]) and 5-(N-octa-decanoyl) aminofluorescein (ODAF), we have investigated lipid topology and dynamics in the plasma membrane of ejaculated bull spermatozoa. Contrary to reports in the literature, we have found that DiIC(16) stains only dead or damaged spermatozoa whereas ODAF intercalates into the plasma membrane of both live and dead cells, each type showing a distinctive staining pattern. FRAP analysis with ODAF revealed that diffusion coefficients on live spermatozoa are significantly faster on the acrosome and postacrosome (29.3x10(−9) cm2/second) than on the midpiece and principal piece (11.8x10(−9) cm2/second). Recovery (R) is >90% in all domains. ODAF diffusion also shows regionalized temperature-sensitivity with a 4-fold increase over the sperm head and a 1.8-fold increase on the tail between 20 degrees C and 37 degrees C. Remarkably, dead or permeabilized spermatozoa rapidly develop a large immobile phase (R<25%) over the whole plasma membrane. This rigidification is temperature insensitive and irreversible suggesting major changes in the physical state of membrane lipids. It is concluded that lipid diffusion in the plasma membrane of live bull spermatozoa is rapid and varies significantly between surface domains. Following permeabilization or cell death, however, a large immobile phase develops indicating substantial changes in membrane lipid disposition.
Publisher
The Company of Biologists
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献