Microtubules suppress actomyosin-based cortical flow in Xenopus oocytes

Author:

Canman J.C.1,Bement W.M.1

Affiliation:

1. Department of Zoology, University of Wisconsin, Madison 53706, USA.

Abstract

Several cell motility processes including cytokinesis and cell locomotion are dependent on the interplay of the microtubule and actomyosin cytoskeletons. However, because such processes are essentially visual phenomena, interactions between the two cytoskeletal systems have been difficult to study quantitatively. To overcome this difficulty, we have developed the Xenopus oocyte as an inducible, quantitative model system for actomyosin-based cortical flow and then exploited the strengths of this system to assess the relationship between microtubules and cortical flow. As in other systems, oocyte cortical flow entails: (1) redistribution of cortical filamentous actin (f-actin); (2) a requirement for actomyosin; (3) redistribution of cell surface proteins; (4) a requirement for cell surface protein mobility; and (5) directed movement of cortical organelles. Cortical flow rate in the oocyte system is inversely proportional to the level of polymeric tubulin and microinjection of free tubulin has no effect on the rate of cortical flow. Enhancement of microtubule polymerization inhibits cortical f-actin cable formation during cortical flow. The effects of microtubule depolymerization on cortical flow are rapid, independent of transcription or translation, independent of effects on the oocyte intermediate filament system, and independent of the upstream stimulus for cortical flow. The results show that the microtubules themselves, or a factor associated with them, suppress cortical flow, either by mechanically resisting flow, or by modulating the actomyosin cytoskeleton.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3