Molecular chaperones and the cytoskeleton

Author:

Liang P.1,MacRae T.H.1

Affiliation:

1. Department of Biology, Dalhousie University, Halifax, NS, Canada.

Abstract

Heat shock proteins, first observed because they are preferentially synthesized by organisms exposed to heat or other physiological stress, are also synthesized constitutively. These proteins are divided into several families, namely, HSP100, 90, 70, 60 (chaperonin), and the small heat shock/alpha-crystallin proteins. They enjoy a wide phylogenetic distribution and are important because they function as molecular chaperones, able to mediate many cellular processes through an influence on higher order protein structure. For example, molecular chaperones assist in the transport of proteins into mitochondria and chloroplasts, as well as influencing clathrin lattice dynamics, viral replication and transcriptional activation. Under conditions of stress, some molecular chaperones prevent denaturation of proteins while others may dissociate protein aggregates, refolding monomers derived therefrom or directing their proteolytic destruction. We present in this review an analysis of the emerging literature on the relationship between molecular chaperones and the cytoskeleton, a collection of polymeric structures consisting of microtubules, microfilaments and intermediate filaments. A recent development in this field is identification of the TCP-1 complex as the eukaryotic cytoplasmic chaperonin which directs folding of cytoskeletal proteins such as alpha/beta/gamma-tubulin, actin and centractin. Moreover, the TCP-1 complex is a centrosomal component, apparently involved in the nucleation of microtubules. Other molecular chaperones recognize one or more cytoskeletal elements and in most cases they modulate the assembly of and/or provide protection for their constituent proteins. For example, HSP70 protects the centrosome and perhaps intermediate filaments during heat shock, and like HSP90, it binds to microtubules. Small heat shock proteins interact with microfilaments and intermediate filaments, affect their polymerization and guard them from heat shock by a phosphorylation-dependent mechanism. We conclude that molecular chaperones have different but cooperative roles in the formation and function of the eukaryotic cell cytoskeleton.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3