Identification and characterization of a novel type of annexin-membrane interaction: Ca2+ is not required for the association of annexin II with early endosomes

Author:

Jost M.1,Zeuschner D.1,Seemann J.1,Weber K.1,Gerke V.1

Affiliation:

1. Institute for Medical Biochemistry, ZMBE, University of Munster, Germany.

Abstract

Annexin II, a member of a family of Ca2+ and membrane binding proteins, has been implicated in regulating membrane organization and membrane transport during endocytosis and Ca2+ regulated secretion. To characterize the mechanistic aspects of the annexin. II action we studied parameters which determine the endosomal association of annexin II. Immunoblot analysis of subcellular membrane fractions prepared from BHK cells in the presence of a Ca2+ chelating agent reveals that annexin II remains associated with endosomal membranes under such conditions. This annexin II behaviour is atypical for the Ca2+ regulated annexins and is corroborated by the finding that ectopically expressed annexin II mutants with inactivated Ca2+ binding sites continue to co-fractionate with endosomal membranes. The Ca(2+)-independent membrane association of annexin II is also not affected by introducing mutations interfering with the complex formation of annexin II with its intracellular protein ligand p11. However, a deletion of the unique N-terminal domain of annexin II, in particular the sequence spanning residues 15 to 24, abolishes the Ca(2+)-independent association of the protein with endosomes. These results describe a novel, Ca(2+)-independent type of annexin-membrane interaction and provide a first explanation for the observed preference of different annexins for different cellular membranes. In the case of annexin II this specificity could be mediated through specific membrane receptors interacting with a unique sequence in the annexin II molecule.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3